Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662601

RESUMO

Plastics contaminations are found globally and fit the exposure profile of the planetary boundary threat. The plasticizer of dibutyl phthalate (DBP) leaching has occurred and poses a great threat to human health and the ecosystem for decades, and its toxic mechanism needs further comprehensive elucidation. In this study, environmentally relevant levels of DBP were used for exposure, and the developmental process, oxidative stress, mitochondrial ultrastructure and function, mitochondrial DNA (mtDNA) instability and release, and mtDNA-cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway with inflammatory responses were measured in zebrafish at early life stage. Results showed that DBP exposure caused developmental impairments of heart rate, hatching rate, body length, and mortality in zebrafish embryo. Additionally, the elevated oxidative stress damaged mitochondrial ultrastructure and function and induced oxidative damage to the mtDNA with mutations and instability of replication, transcription, and DNA methylation. The stressed mtDNA leaked into the cytosol and activated the cGAS-STING signaling pathway and inflammation, which were ameliorated by co-treatment with DBP and mitochondrial reactive oxygen species (ROS) scavenger, inhibitors of cGAS or STING. Furthermore, the larval results suggest that DBP-induced mitochondrial toxicity of energy disorder and inflammation were involved in the developmental defects of impaired swimming capability. These results enhance the interpretation of mtDNA stress-mediated health risk to environmental contaminants and contribute to the scrutiny of mitochondrial toxicants.

2.
Environ Sci Pollut Res Int ; 31(17): 25978-25990, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492140

RESUMO

China has become one of the most serious countries suffering from biological invasions in the world. In the context of global climate change, invasive alien species (IAS) are likely to invade a wider area, posing greater ecological and economic threats in China. Western mosquitofish (Gambusia affinis), which is known as one of the 100 most invasive alien species, has distributed widely in southern China and is gradually spreading to the north, causing serious ecological damage and economic losses. However, its distribution in China is still unclear. Hence, there is an urgent need for a more convenient way to detect and monitor the distribution of G. affinis to put forward specific management. Therefore, we detected the distribution of G. affinis in China under current and future climate change by combing Maxent modeling prediction and eDNA verification, which is a more time-saving and reliable method to estimate the distribution of species. The Maxent modeling showed that G. affinis has a broad habitat suitability in China (especially in southern China) and would continue to spread in the future with ongoing climate change. However, eDNA monitoring showed that occurrences can already be detected in regions that Maxent still categorized as unsuitable. Besides temperature, precipitation and human influence were the most important environmental factors affecting the distribution of G. affinis in China. In addition, by environmental DNA analysis, we verified the presence of G. affinis predicted by Maxent in the Qinling Mountains where the presence of G. affinis had not been previously recorded.


Assuntos
Ciprinodontiformes , DNA Ambiental , Animais , Humanos , Espécies Introduzidas , Ecossistema , China
3.
Environ Pollut ; 348: 123846, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548160

RESUMO

Dibutyl phthalate (DBP) contamination has raised global concern for decades, while its health risk with toxic mechanisms requires further elaboration. This study used zebrafish ZF4 cells to investigate the toxicity of ferroptosis with underlying mechanisms in response to DBP exposure. Results showed that DBP induced ferroptosis, characterized by accumulation of ferrous iron, lipid peroxidation, and decrease of glutathione peroxidase 4 levels in a time-dependent manner, subsequently reduced cell viability. Transcriptome analysis revealed that voltage-dependent anion-selective channel (VDAC) in mitochondrial outer membrane was upregulated in ferroptosis signaling pathways. Protecting mitochondria with a VDAC2 inhibitor or siRNAs attenuated the accumulation of mitochondrial superoxide and lipid peroxides, the opening of mitochondrial permeability transition pore (mPTP), and the overload of iron levels, suggesting VDAC2 oligomerization mediated the influx of iron into mitochondria that is predominant and responsible for mitochondria-dependent ferroptosis under DBP exposure. Furthermore, the pivotal role of activating transcription factor 4 (ATF4) was identified in the transcriptional regulation of vdac2 by ChIP assay. And the intervention of atf4b inhibited DBP-induced VDAC2 upregulation and oligomerization. Taken together, this study reveals that ATF4-VDAC2 signaling pathway is involved in the DBP-induced ferroptosis in zebrafish ZF4 cells, contributing to the in-depth understanding of biotoxicity and the ecological risk assessment of phthalates.


Assuntos
Ferroptose , Peixe-Zebra , Animais , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Mitocôndrias/metabolismo , Ferro/metabolismo
4.
Environ Sci Technol ; 57(36): 13336-13345, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642958

RESUMO

Insights into the symbiotic relation between eukaryotic hosts and their microbiome lift the curtain on the crucial roles of microbes in host fitness, behavior, and ecology. However, it remains unclear whether and how abiotic stress shapes the microbiome and further affects host adaptability. This study first investigated the effect of antibiotic exposure on behavior across varying algae taxa at the community level. Chlorophyta, in particular Chlorella vulgaris, exhibited remarkable adaptability to antibiotic stress, leading to their dominance in phytoplankton communities. Accordingly, we isolated C. vulgaris strains and compared the growth of axenic and nonaxenic ones under antibiotic conditions. The positive roles of antibiotics in algal growth were apparent only in the presence of bacteria. Results of 16S rRNA sequencing further revealed that antibiotic challenges resulted in the recruitment of specific bacterial consortia in the phycosphere, whose functions were tightly linked to the host growth promotion and adaptability enhancement. In addition, the algal phycosphere was characterized with 47-fold higher enrichment capability of antibiotic resistance genes (ARGs) than the surrounding water. Under antibiotic stress, specific ARG profiles were recruited in C. vulgaris phycosphere, presumably driven by the specific assembly of bacterial consortia and mobile genetic elements induced by antibiotics. Moreover, the antibiotics even enhanced the dissemination potential of the bacteria carrying ARGs from the algal phycosphere to broader environmental niches. Overall, this study provides an in-depth understanding into the potential functional significance of antibiotic-mediated recruitment of specific algae-associated bacteria for algae adaptability and ARG proliferation in antibiotic-polluted waters.


Assuntos
Chlorella vulgaris , Microbiota , Incidência , RNA Ribossômico 16S , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética
5.
Chemosphere ; 326: 138510, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36966926

RESUMO

Dibutyl phthalate (DBP) is commonly applied plasticizer in plastic products such as face masks, easily leaches or migrates into environment and its widespread contamination posed profound health risks. Further concerns rise regarding to the toxicity of DBP at subcellular level, while little is known about the ranging effects on mitochondrial susceptibility. Present study investigated the mitochondrial impairments with implicated cell death upon DBP exposure on zebrafish cells. Elevated mitochondrial oxidative stress reduced its membrane potential and count, enhanced fragmentation, and impaired ultrastructure that showed smaller size and cristae rupture. Afterwards, the critical function of ATP synthesis was damaged and the stabilized binding capacity between DBP with mitochondrial respiratory complexes was simulated by the molecular docking. And the top pathways enrichment of mitochondrion and metabolism by transcriptome analyses verified the mitochondrial dysfunction that indicated the human diseases risks. The mitochondrial DNA (mtDNA) replication and transcription with DNA methylation modifications were also disrupted, reflecting the genotoxicity on mtDNA. Moreover, the activated autophagy and apoptosis underlying mitochondrial susceptibility integrated into cellular homeostasis changes. These findings provide the first systemic evidence broadening and illustrating the mitochondrial toxicity of DBP exposure on zebrafish model that raise concern on phthalates contamination and ecotoxicological evaluation.


Assuntos
Dibutilftalato , Peixe-Zebra , Animais , Humanos , Dibutilftalato/toxicidade , Simulação de Acoplamento Molecular , Plastificantes/toxicidade , DNA Mitocondrial
6.
Environ Pollut ; 326: 121457, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958653

RESUMO

Overuse of antimicrobial agents are generally considered to be a key factor in the occurrence of antibiotic resistance bacteria (ARB). Nevertheless, it is unclear whether ARB can be induced by non-antibiotic chemicals such as nonsteroidal anti-inflammatory drug (NSAID). Thus, the objective of this study is to investigate whether NSAID diclofenac (DCF) promote the emergence of antibiotic resistance in Escherichia coli K12 MG1655. Our results suggested that DCF induced the occurrence of ARB which showed hereditary stability of resistance. Meanwhile, gene variation was identified on chromosome of the ARB, and DCF can cause bacterial oxidative stress and SOS response. Subsequently, transcriptional levels of antioxidant (soxS, sodA, sodC, gor, katG, ahpF) and SOS (recA, lexA, uvrA, uvrB, ruvA, ruvB, dinB, umuC, polB) system-related genes were enhanced. However, the expression of related genes cannot be increased in high-dosage treatment compared with low-dosage samples because of cytotoxicity and cellular damage. Simultaneously, high-dosage DCF decreased the mutation frequency but enhanced the resistance of mutants. Our findings expand our knowledge of the promoting effect on the emergence of ARB caused by DCF. More attention and regulations should be given to these potential ecological and health risks for widespread DCF.


Assuntos
Diclofenaco , Escherichia coli , Diclofenaco/toxicidade , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Mutagênese , Anti-Inflamatórios não Esteroides/toxicidade , Resistência Microbiana a Medicamentos
7.
Aquat Toxicol ; 257: 106459, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36857871

RESUMO

With large amounts of cephalosporin end up in natural ecosystems, water has been acknowledged as the large reservoir of ß-lactam resistance over the past decades. However, there is still insufficient knowledge available on the function of the living organisms to the transmission of antibiotic resistance. For this reason, in this study, using adult zebrafish (Danio rerio) as animal model, exposing them to environmentally relevant dose of cefotaxime for 150 days, we asked whether cefotaxime contamination accelerated ß-lactam resistance in gut microbiota as well as its potential transmission. Results showed that some of ß-lactam resistance genes (ßRGs) were intrinsic embedded in intestinal microbiome of zebrafish even without antibiotic stressor. Across cefotaxime treatment, the abundance of most ßRGs in fish gut microbiome decreased apparently in the short term firstly, and then increased with the prolonged exposure, forming distinctly divergent ßRG profiles with antibiotic-untreated zebrafish. Meanwhile, with the rising concentration of cefotaxime, the range of ßRGs' host-taxa expanded and the co-occurrence relationships of mobile genetics elements (MGEs) with ßRGs intensified, indicating the enhancement of ßRGs' mobility in gut microbiome when the fish suffered from cefotaxime contamination. Furthermore, the path of partial least squares path modeling (PLS-PM) gave an integral assessment on the specific causality of cefotaxime treatment to ßRG profiles, showing that cefotaxime-mediated ßRGs variation was most ascribed to the alteration of MGEs under cefotaxime stress, followed by bacterial community, functioning both direct influence as ßRG-hosts and indirect effects via affecting MGEs. Finally, pathogenic bacteria Aeromonas was identified as the critical host for multiple ßRGs in fish guts, and its ß-lactam resistance increased over the duration time of cefotaxime exposure, suggesting the potential spreading risks for the antibiotic-resistant pathogens from environmental ecosystems to clinic. Overall, our finding emphasized cefotaxime contamination in aquatic surroundings could enhance the ß-lactam resistance and its transmission mobility in fish bodies.


Assuntos
Bactérias , Cefotaxima , Microbioma Gastrointestinal , Resistência beta-Lactâmica , Cefotaxima/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Peixe-Zebra/microbiologia , Poluentes Químicos da Água/toxicidade , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética , Sequências Repetitivas Dispersas/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Animais , Aeromonas/efeitos dos fármacos , Aeromonas/genética
8.
Aquat Toxicol ; 249: 106221, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35709638

RESUMO

Driven by anthropogenic pressure, Antibiotic resistance genes (ARGs) could transfer from the environmental resistome into human commensals or even pathogens. The transport of ARGs through aquatic ecosystems is crucial and has attracted attention. Here, we employed metagenomic and binning to compare ARGs profiles, their co-occurrence with metal resistance genes (MRGs) and mobile genetic elements (MGEs), and their hosts between pristine and anthropogenic influenced rivers and explore the ecological mechanisms underlying the dissemination of ARGs induced by anthropogenic activities. The significantly increased relative abundance of macrolide-lincosamide-streptogramins, vancomycin, ß-lactam and sulfonamide resistance genes along the environmental gradient from pristine to polluted sediments implied that anthropogenic impact aided the emergence and dissemination of certain ARGs. At the lower reach of the Ba River, the higher ratios for contigs carrying more than one ARG suggested that anthropogenic pollution favored the co-occurrence of multiple ARGs. Anthropogenic pressures also increased the relative abundance of advantaged hosts, including Chloroflexi, Firmicutes and Euryarchaeota. At the lower reach of Ba River, Romboutsia timonensis carrying multiple ARGs and ICEs were successfully recovered, posing a serious threat to human health by affecting the metabolism of gut microbiomes. And Methanothrix soehngenii affiliated to archaea carrying multiple ARGs, MRGs and ICEs were also recovered from the lower Ba River. The partial least squares path modeling revealed that MGEs were the most predominant factors inducing the ARG profiles, and the antibiotic resistance could be enriched by co-transfer with MRGs. Furthermore, environmental factors could impact the ARG profiles indirectly by first influencing the ARGs' hosts.


Assuntos
Rios , Poluentes Químicos da Água , Efeitos Antropogênicos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Ecossistema , Humanos , Poluentes Químicos da Água/toxicidade
9.
Environ Pollut ; 308: 119658, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750304

RESUMO

Biological invasions and continued salinization of freshwater are two global issues with largely serious ecological consequences. Increasing salinity in freshwater systems, as an environmental stressor, may negatively affect normal life activities in fish. It has been documented that salinity limits the invasive success of alien species by mediating physiological and life-history performances, however, there are few studies on how salinity affects its invasive process via altered behaviors. Using wild-caught invasive western mosquitofish (Gambusia affinis) as animal model, in this study, we asked whether gradual increasing salinity affects behaviors (personality and mate choice decision here), life-history traits, as well as the correlation between them by exposing G. affinis to three levels salinity (freshwater, 10 and 20‰). Results showed that, with increased salinity, male tended to be shyer, less active, less sociable, and reduced desire to mate, and female tended to be shyer, less active and lost preferences for the larger male. Furthermore, across salinity treatments, male exhibited reduced body fat content and rising reproduction allocation, however, pregnant female revealed diametrically opposed trends. In addition, the correlation between life-history traits and behaviors was only identified in pregnant female. It seems that either salinity or life-history traits directly affects mosquitofish behaviors. In summary, our results partially emphasize the harmful consequences of salinity on both life-history traits and behavioral performances. These findings provide a novel perspective on how salinity potentially affect fish fitness via altering personalities, mate choice decisions, as well as body condition, and hence supports the idea that salinity could affect the spread of invasive mosquitofish.


Assuntos
Ciprinodontiformes , Traços de História de Vida , Animais , Ciprinodontiformes/fisiologia , Feminino , Água Doce , Espécies Introduzidas , Masculino , Salinidade
10.
Environ Sci Pollut Res Int ; 29(50): 75841-75850, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35657546

RESUMO

The selective pressure of the living surroundings is a key factor in the development of resistance profiles in pathogenic bacteria such as Aeromonas spp. In this study, Aeromonas species were isolated from the Ba River, and their composition, resistance profiles to antibiotics, and heavy metals (HMs) were investigated. The discovery revealed that selective pressure altered the diversity of Aeromonas spp., with Aeromonas veronii being more adaptable to contaminated waters. Long-term exposure to antibiotics or HMs exerts persistent selective pressure on Aeromonas species, leading to the increase in multiple antibiotic resistance (MAR) index and multidrug-resistant (MDR) strains. Furthermore, HMs could drive the co-selection of antibiotic resistance via co-resistance or cross-resistance. blaTEM, blaSHV, blaCTX-M, sul1, czcA, mexA, and mexF were detected at high frequencies in Aeromonas species. Among these resistance phenotypes conferred genes, blaTEM may be intrinsic in the genome of Aeromonas spp., while mexA and mexF may have been acquired from surrounding environments owing to selective pressure. Resistance genes evolved as a consequence of selective pressure and have been shown to be positively correlated with their prevalence. Our study suggests that the selective pressure of living surroundings significantly contributes to the composition and resistance profiles of Aeromonas spp. in the riverine ecosystem.


Assuntos
Aeromonas , Metais Pesados , Aeromonas/genética , Antibacterianos/farmacologia , Ecossistema , Metais Pesados/farmacologia , Rios/microbiologia
11.
Fish Physiol Biochem ; 48(4): 869-881, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35652993

RESUMO

Mitochondria are critical to cellular activity that implicated in expansive networks to maintain organismal homeostasis under external stimuli of nutrient variability, a common and severe stress to fish performance during the intensive culture conditions. In the present study, zebrafish embryonic fibroblast cells were used to investigate the fish mitochondrial changes upon serum deprivation. Results showed that mitochondrial content and membrane potential were significantly reduced with increased intracellular ROS level in the serum deprivation treated fish cells. And the impaired mitochondria were characterized by rough and fracted outer membrane, and more fused mitochondria were frequently observed with the upregulated mRNA expressions of mitochondrial fusion genes (mfn1b, mfn2, and opa1). Besides, the mitochondrial DNA (mtDNA) copy numbers of mtatp6, mtcox1, mtcytb, mtnd4, and mtnd6 were overall showing the highly significant reduction, together with the mRNA expressions of these genes significantly increased, exhibiting the compensatory effects in mitochondria. Furthermore, the methyl-cytosine of whole mtDNA was compared and the methyl-reads numbers were distinctly increased in the treatment group, reflecting the instability of fish mtDNA with mitochondrial dysfunction under nutrient fluctuations. Collectively, current findings could facilitate the integrated research between fish mitochondrial response and external variables that indicates the potentially profound and durative deficits in fish health during the aquaculture processes.


Assuntos
Mitocôndrias , Peixe-Zebra , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Soro , Peixe-Zebra/genética
12.
Environ Res ; 212(Pt D): 113592, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654160

RESUMO

As a result of anthropogenic pollution, the nitrogen nutrients load in urban rivers has increased, potentially raising the risk of river eutrophication. Here, we studied how anthropogenic impacts alter nitrogen metabolism in river sediments by comparing the metagenomic function of microbial communities between relatively primitive and human-disturbed sediments. The contents of organic matter (OM), total nitrogen (TN), NO3--N and NO2--N were higher in primitive site than in polluted sites, which might be due to vegetation density, sediment type, hydrology, etc. Whereas, NH4+-N content was higher in midstream and downstream, indicating that nitrogen loading increased in the anthropogenic regions and subsequently leading higher NH4+-N. Hierarchical cluster analyses revealed significant changes in the community structure and functional potential between the primitive and human-affected sites. Metagenomic analysis demonstrated that Demequina, Streptomyces, Rubrobacter and Dechloromonas were the predominant denitrifiers. Ardenticatena and Dechloromonas species were the most important contributors to dissimilatory nitrate reduction. Furthermore, anthropogenic pollution significantly increased their abundance, and resulting in a decrease in NO3-, NO2--N and an increase in NH4+-N contents. Additionally, the SOX metabolism of Dechloromonas and Sulfuritalea may involve in the sulfur-dependent autotrophic denitrification process by coupling the conversion of thiosulfate to sulfate with the reduction of NO3--N to N2. From pristine to anthropogenic pollution sediments, the major nitrifying bacteria harboring Hao transitioned from Nitrospira to Nitrosomonas. This study sheds light on the consequences of anthropogenic activities on nitrogen metabolism in river sediments, allowing for better management of nitrogen pollution and eutrophication in river.


Assuntos
Microbiota , Nitrogênio , Bactérias/genética , Bactérias/metabolismo , China , Desnitrificação , Sedimentos Geológicos/química , Nitrogênio/análise , Dióxido de Nitrogênio
13.
J Environ Manage ; 318: 115521, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35716556

RESUMO

The pristine river and urban river show an environmental gradient caused by anthropogenic impacts such as wastewater treatment plants and domestic wastewater discharges. Here, metagenomic and binning analyses unveiled antibiotic resistance genes (ARGs) profiles, their co-occurrence with metal resistance genes (MRGs) and mobile genetic elements (MGEs), and their host bacteria in water and Hemiculter leucisculus samples of the river. Results showed that the decrease of ARG abundances from pristine to anthropogenic regions was attributed to the reduction of the relative abundance of multidrug resistance genes in water microbiomes along the environmental gradient. Whereas anthropogenic impact contributed to the enrichment of ARGs in fish gut microbiomes. From pristine to anthropogenic water samples, the dominant host bacteria shifted from Pseudomonas to Actinobacteria. Potential pathogens Vibrio parahaemolyticus, Enterobacter kobei, Aeromonas veronii and Microcystis aeruginosa_C with multiple ARGs were retrieved from fish gut microbes in lower reach of Ba River. The increasing trends in the proportion of the contigs carrying ARGs (ARCs) concomitant with plasmids along environmental gradient indicated that plasmids act as efficient mobility vehicles to enhance the spread of ARGs under anthropogenic pressures. Moreover, the higher co-occurrence of ARGs and MRGs on plasmids revealed that anthropogenic impacts accelerated the co-transfer potential of ARGs and MRGs and the enrichment of ARGs. Partial least squares path modeling revealed anthropogenic contamination could shape fish gut antibiotic resistome mainly via affecting ARG host bacteria in water microbiomes, following by ARGs co-occurrence with MGEs and MRGs in gut microbiomes. This study enhanced our understanding of the mechanism of the anthropogenic activities on the transmission of antibiotic resistome in river ecosystem and emphasized the risk of ARGs and pathogens transferring from an aquatic environment to fish guts.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos , Prevalência , Água
14.
Environ Res ; 213: 113714, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35718162

RESUMO

Most bacteria in the natural environment have a biofilm mode of life, which is intrinsically tolerant to antibiotics. While until now, the knowledge of biofilm formation by Acinetobacter johnsonii is not well understood. In this study, the characteristics and the effect of a sub-inhibitory concentration of antibiotic on A. johnsonii biofilm and planktonic cells were determined. We discovered a positive relationship between biofilm formation and tetracycline resistance, and biofilms rapidly evolve resistance to tetracycline they are treated with. Persister cells commonly exist in both planktonic and biofilm cells, with a higher frequency in the latter. Further transcriptomic analysis speculates that the overexpression of multidrug resistance genes and stress genes were mainly answered to sub lethal concentration of tetracycline in planktonic cells, and the lower metabolic levels after biofilm formation result in high resistance level of biofilm cells to tetracycline. Altogether, these data suggest that A. johnsonii can adjust its phenotype when grown as biofilm and change its metabolism under antibiotic stress, and provide implications for subsequent biofilm control.


Assuntos
Plâncton , Transcriptoma , Acinetobacter , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Tetraciclina/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-35381366

RESUMO

Bisphenol A (BPA) is a widely used endocrine disruptor, which has attracted much attention due to its harmful effects on male reproduction. To investigate the interference of BPA on steroid synthesis in males, male rare minnows (Gobiocypris rarus) were exposed to 15 µg L-1 BPA for 7, 14 and 21 d. Meanwhile, a positive control group was performed with 25 ng L-1 17α-ethynyl estradiol (EE2). Results showed that BPA exposure induced lower testosterone (T) levels, while affecting the transcripts of steroidogenic gene StAR. Moreover, BPA induced abnormal germ cells proliferation in the testis in rare minnow. Transcriptome analysis showed that 354 transcripts significantly differentially expressed after BPA exposure for 14 d, several of them were enriched in the signaling pathways of cell cycle process, PPAR signaling pathway, the steroid synthesis pathway and estrogen signaling pathway. BPA significantly increased estrogen receptor (ER) levels and induced abnormal protein levels of PPARγ. BPA disrupted the StAR expression by interfering ER enrichments within StAR 5' flanking region. Additionally, our study also revealed that BPA and EE2 might have different mechanisms for interfering with steroid hormone levels and germ cells proliferation in the testis.


Assuntos
Cyprinidae , Testículo , Região 5'-Flanqueadora , Animais , Compostos Benzidrílicos/metabolismo , Compostos Benzidrílicos/toxicidade , Cyprinidae/metabolismo , Masculino , Fenóis , Esteroides/metabolismo , Esteroides/farmacologia , Testosterona/metabolismo
16.
Aquat Toxicol ; 245: 106124, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35193009

RESUMO

Bisphenol-A (BPA) has been reported to disrupt blood-testis barrier (BTB) integrity in mammals. However, its effects on fish testis sertoli cell (SC) barrier and the underlying mechanisms have been largely unknown to date. To study the SC barrier toxicity induced by BPA, male rare minnows (Gobiocypris rarus) were exposed to 15 µg L - 1 BPA for 7, 14 and 21 d. Meanwhile, a 25 ng L-1 17α-ethynyl estradiol (EE2) group was set up as the positive control. Results showed that BPA induced immune response in the testes and decreased offspring hatching rate. The biotin tracer assay showed that BPA exposure destroyed the integrity of the testis SC barrier. In addition, BPA exposure decreased the expressions of occludin, ZO-1, CX43 and N-cadherin proteins. The transcripts of CX43 and occludin were significantly decreased and SP1 recruitment in each gene promoter was repressed after BPA exposure. Moreover, the cytokines (TNFα and IL-1ß) were significantly increased while the JNK signal pathway was activated after BPA exposure. BPA also increased the matrix metalloproteinases 1 (MMP1) and MMP2 levels in the testes. In addition, estrogenic effect did not entirely explain the mechanism by which BPA disrupted the SC barrier in G. rarus testes. These results suggested that BPA disrupted the SC barrier integrity by inhibiting SP1 enrichments within CX43 and occludin 5' flanking regions through activated cytokines/JNK signaling pathway. MMPs were also involved in the disruption of SC barrier caused by BPA exposure.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Compostos Benzidrílicos/toxicidade , Cyprinidae/metabolismo , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Mamíferos/metabolismo , Células de Sertoli/metabolismo , Testículo , Poluentes Químicos da Água/toxicidade
17.
Gene ; 808: 145985, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34600047

RESUMO

Genome plasticity is a key determinant that Acinetobacter johnsonii could widely distribute in natural and clinical environments. However, little attention has been paid to figure out the changes in the genome during A. johnsonii's evolution. Here, a comparative genomic analysis of A. johnsonii isolated from clinical and environmental sources was conducted. In this study, we found A. johnsonii has an open pan-genome and has great adaptability to different environments. Based on the results of the phylogenetic tree, ANI value and the distribution of accessory genes, we found that strains from the same habitat had a high degree of similarity. Though genes associated with the fundamental process were mostly conserved in evolution, clinical-derived isolates accumulate more genes associated with translational modification, ß-lactamase and defense mechanisms, whereas environmental-derived isolates enriched more genes related to substances degradation. In addition, clinical-derived strains harbored some "strong" virulence islands and resistance islands. This study highlights the evolutionary relationship of A. johnsonii isolates from clinical and environmental sources.


Assuntos
Acinetobacter/genética , Acinetobacter/metabolismo , Adaptação Biológica/genética , Evolução Biológica , China , Bases de Dados Genéticas , Evolução Molecular , Genoma Bacteriano/genética , Genômica/métodos , Filogenia , Virulência
18.
Environ Sci Pollut Res Int ; 28(44): 62943-62958, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34218381

RESUMO

Ephedra sinica (ES) is a promising medicinal plant with a wide range of pharmacological aspects, including antioxidant and anti-inflammatory properties. Fipronil (FN) is a popularly used systemic insecticide in agriculture and veterinary applications. FN exposure can result in a variety of negative health consequences. The study aimed to explore the prophylactic effects of Ephedra sinica extract (ESE) against hepatotoxicity in FN-treated rats by following the TLR4/ MyD88/ NF-κB pathway. ESE was tested for polyphenolic and antioxidant activity. Forty rats were separated into four groups and given orally by FN (10 mg/kg B.W.) and/or ESE (150 mg/kg B.W.). Blood and tissue samples were collected at the end of the experiment and prepared for pathophysiological, gene expression, and pathological analysis. ESE showed strong antioxidant activity, as well as reduced levels of hepatic MDA and oxidative stress markers (H2O2, NO). Hepatic SOD and CAT activities were increased even further. Furthermore, in FN-treated rats, ESE improved liver functions (ALT, AST, ALP, and LDH) and recovered the lipid profile (Cho, TriG, HDL, and LDL). Moreover, by inhibiting TLR4/ MyD88/ NF-κB induction, ESE alleviated hepatic pathological changes and decreased FN-induced elevations of TNF-α, IL-6, and IL-1ß mRNA/protein levels. These findings suggested that ESE mitigated FN-induced hepatotoxicity via combating oxidative stress and relieving inflammation.


Assuntos
Ephedra sinica , NF-kappa B , Animais , Ephedra sinica/metabolismo , Peróxido de Hidrogênio/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Pirazóis , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
19.
Ecol Evol ; 11(11): 6798-6813, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141257

RESUMO

Sharpbelly Hemiculter leucisculus (Basilewski, 1855) is a small, widespread, and native cyprinid fish with prominent habitat suitability and high invasive potential and is becoming the dominant species in freshwater ecosystems under intensified environmental disturbances. But how H. leucisculus acclimates to extremely heterogeneous environments remains unclear. In current study, the genetic structure of H. leucisculus was analyzed using Bayesian phylogenetic inference, haplotype network, and STRUCTURE base on cytb gene across 18 populations spanning 20 degrees of latitude and 18 degrees of longitude in China. The morphological diversification of body size and shape for H. leucisculus along the climate gradient was studied. The results showed that the 18 H. leucisculus populations were divided into 3 clusters: one cluster mainly from Huanghe River Basin, another cluster mainly from Yangzi River Basin, and H cluster containing Hainan and Beihai populations. The fish from southern populations were deeper bodied while individuals from northern populations were more slender. Inland individuals were more streamlined while coastal individuals were of deeper body. The partial Mantel test predicts that the potential mechanism underlining the intraspecies morphological diversification along climate gradients is primarily the divergent selection pressures among different environments, while genetic variation had less contribution to morphological differentiation. The formation of the Nanling Mountain Range could drive genetic differentiation between Beihai population and those from Yangzi River Basin. The present results highlight strong selective pressures of climate on widespread species and enrich morphological differentiation basis of acclimation for species with high habitat suitability and invasive potential.

20.
Aquat Toxicol ; 236: 105849, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34010735

RESUMO

Bisphenol A (BPA) is a widely used chemical that represents a reproductive hazard in fish. However, the molecular pathways mediating reproductive toxicity under chronic BPA exposure remain unclear. To study the reproductive hazards associated with chronic BPA exposure, adult male rare minnows (Gobiocypris rarus) were treated with 15 µg L - 1 and 225 µg L - 1 BPA for 90 days. Results showed that chronic BPA treatment induced reproductive impairments with decreased fertilization capacity and movement time of sperm. Transcriptome analysis indicated 1421 transcripts that were differentially expressed in response to BPA exposure, which are involved in the biological process of oxidative stress, immune responses and DNA/histone methylation. BPA caused the oxidative stress via significantly increasing hydrogen peroxide (H2O2) levels and inhibiting the activities of antioxidant-related enzymes (Catalase, CAT). BPA caused an inflammatory response in the testes by significantly increasing IL-1ß levels and inducing infiltration of inflammatory cells. Moreover, exposure to 15 µg L - 1 BPA significantly decreased the genomic DNA methylation level. These data revealed that chronic BPA exposure had adverse effects on male reproduction. Oxidative stress, inflammatory response and DNA/histone methylation might account for the decreased sperm quality.


Assuntos
Compostos Benzidrílicos/toxicidade , Cyprinidae/fisiologia , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Cyprinidae/metabolismo , DNA/metabolismo , Metilação de DNA , Histonas/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Estresse Oxidativo , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...